The list of selected staff publications may be searched by keyword or author and can be sorted by year.

"The Primacy of Science in Modernity, of Technology in Postmodernity, and of Ideology in the History of Technology" History and Technology, 23:1, 1 - 152.

The abrupt reversal of culturally ascribed primacy in the science & technology relationship—namely, from the primacy of science relative to technology prior to circa 1980, to the primacy of technology relative to science since about that date—is proposed as a demarcator of postmodernity from modernity. Ironically, that prior primacy of science is largely responsible for historians of technology having remained almost wholly unacknowledging of postmodernity’s epochal elevation of the cultural standing of the subject of their studies.
View Frontispiece

"Into quantum electronics: the maser as 'gadget' of Cold-War America." In Paul Forman and José M. Sánchez-Ron, eds. National Military Establishments and the Advancement of Science and Technology: Studies in Twentieth Century History (Kluwer Academic Publ.: Dordrecht, 1996), pp. 261–326.

A close examination of the origins of the ammonia beam maser within the military-sponsored Columbia Radiation Laboratory in the early 1950s, together with an examination of the term ‘gadget’ in the parlance of American physicists of that era as indicative of the uneasy relation between their disciplinary self-image and their laboratory practice.

"Truth and objectivity. Part 1: Irony. Part 2: Trust." Science, 269: 565-567, 707–710 (1995).

An essay review of A. Megill, ed., Rethinking objectivity (1994); J. Appleby, L. Hunt, and M. Jacob, Telling the truth about history (1994); S. Shapin, A social history of truth (1994);T. Porter, Trust in numbers (1995). It makes the point that as challenges to belief in truth and in objectivity have escaped from academic discussion, becoming axioms of popular culture, many scholars who previously contributed to undermining that belief are becoming alarmed at the consequences of wholesale voluntarism.

"Inventing the Maser in Postwar America," Osiris, 7: 105–134 (1992).

A critical examination of the concepts and assumptions regarding radiation fields and their interaction with matter underlying the invention of the ammonia beam maser by Charles Townes and his collaborators at Columbia University in the early 1950s, emphasizing particularly that the merits of the device as ‘atomic clock’ were not anticipated, and that until it actually worked the maser was not a priority project in Townes laboratory.

"Tunnels!' —A talk through the exhibition." In Going Underground: Tunneling Past, Present, and Future. Jeffrey K. Stine and Howard Rosen, eds. (Public Works Historical Society: Kansas City, Mo., 1998), 142–49.

An overview of the exhibition in the Smithsonian Institution Libraries’ Dibner Gallery in the Museum, August 1993 to May 1994. The last exhibition to be curated by Ellen Wells, it traced the history of tunneling technology, from antiquity to the present, with particular emphasis on the 19th century.

"Lock-in detection/amplifier." Instruments of science: an historical encyclopedia. Robert Bud and D. J. Warner, eds. (Garland Publishing Co.: New York and London, 1998), pp.359–361.

Consideration of the signal/noise ratio became widespread, indeed mandatory, in physical research only in the years following World War II, largely as a result of analyses and techniques developed to detect a ‘real’ signal in the noisy output of a radar receiver. "Lock-in detection,” most influentially embodied in R. H. Dicke’s microwave radiometer, 1943, is a procedure for noise reduction through subtraction of inputs followed by frequency specific amplification and detection.

"Weimar Culture, Causality, and Quantum Theory, 1918-1927: Aadaptation by German Physicists and Mathematicians to a Hostile Intellectual Environment," Historical Studies in the Physical Sciences, 3: 1–115 (1971).

Argues that the acausal character of the quantum mechanics discovered in 1925–26 was not a matter of chance. Rather, in the years before its discovery, German physicists, prompted by and participating in strong cultural currents antipathetic to the concept of causality, had identified the abandonment of causality as the principal desideratum for the theory to replace classical mechanics.

"Molecular beam measurements of nuclear moments before magnetic resonance: I. I. Rabi and deflecting magnets to 1938. Part I." Annals of Science, v.55: 111–160 (1998).

A close examination of the earliest phases of I. I. Rabi’s scientific life and work, through his postdoctoral research at Hamburg University with Otto Stern, 1927-29, and of the techniques for magnetic deflection of molecular beams employed by Stern and Rabi in that laboratory.

"What the Past Tells Us about the Future of Science" in La ciencia y la tecnologia ante el tercer milenio. José Manuel Sánchez Ron, ed. Madrid: Sociedad Estatal España Nuevo Milenio, 2002. pp. 27–37.

The future of science cannot be predicted by extrapolating current scientific concepts but can, to some extent, by considering the general social and cultural conditions under which scientific knowledge is being produced at present and is likely to be produced in the future.

"P. R. Gross, N. Levitt, and M. W. Lewis, eds., The flight from science and reason" Science, 276: 750–53 (1997).

Essay review of the proceedings of a conference called to refute postmodern intellectual positions, pointing out how ineffective the contributions are in doing so, and how largely the contributions themselves give evidence of the postmodernization of contemporary thought, including that of scientists.

“(Re)cognizing postmodernity: helps for historians -- of science especially,” Berichte zur Wissenschaftsgeschichte, 33 (2010), 157-175.

This paper resumes the argument of “The Primacy…” that faith in procedurism and a low valuation of technology (relative to science) were distinctive for modernity and demarcated it from postmodernity. It extends that argument by drawing attention to the demise of disinterestedness as cultural value in postmodernity. Further, it underscores the distinction between the reality that is postmodernity and the ideology and practice that is postmodernism by drawing attention to the fact that the postmodernists’ contention that contemporary personhood is essentially and characteristically fragmented is contradicted by our exaltation of the single-minded, rule-breaking entrepreneur above all other ideals of personhood, in particular above the open-minded but rule-following scientist.

"Recent science: late-modern and post-modern." In The Historiography of Contemporary Science and Technology. Thomas Söderqvist, editor. (Harwood Academic Publications: London and Chur, 1997), pp. 179–213. Reprinted, with a few revisions, in Science Bought and Sold: Rethinking the Economics of Science. Philip Mirowski and E.-M. Sent, editors. (University of Chicago Press, 2002), pp. 109–148.

Essays identifying the features that distinguish knowledge production in postmodernity from the modern era, stressing the overproduction of all cultural goods, and the acceptance of bound and interested knowledge as fully legitimate knowledge. Direction of knowledge production by moral considerations is thus likewise legitimated, with ‘responsibility’ then appearing to gain primacy as normative category.

Einstein: a Centenary Exhibition with Paul A. Hanle. (Smithsonian Institution Press for National Museum of History and Technology, 1979), 48 pp.

Catalog of an special exhibition, 1979–80, in the Dibner Exhibition Gallery of the Museum featuring artists portraits of Einstein, manuscripts by him, and apparatus connected with tests of his special and general theories of relativity – notably a large torsion balance to test equivalence of gravitational and inertial mass constructed for Lorand Eötvös (lent by Museum for History and Science and Technology, Budapest), and a 1300 Kg aluminum cylinder deployed by Joseph Weber as gravitational wave antenna.

"Researching Rabi's Relics: Using the Electron to Determine Nuclear Moments before Magnetic Resonance, 1927–1937." Artefacts: Studies in the History of Science and Technology. vol.2: Exposing Electronics. Bernard Finn, editor. Amsterdam: Harwood Academic Publishers, 2000. pp. 161–174.

An overview of the technique of magnetic deflection of molecular beams employed by Columbia University physicist I. I. Rabi to determine spins and magnetic moments of atomic nuclei in the years before he invented the technique of nuclear magnetic resonance.

The AAM Guide to Collections Planning with Elizabeth Merritt. (Washington, D.C.: American Association of Museums, 2004).
Ordinary People and Everyday Life: Perspectives on the New Social History e.d. (Nashville: AASLH, 1983).
"Pioneers of Public History: Serving Time in the Trenches: David F. Trask, Public Historian and Federal Historian," The Public Historian 22 (Spring 2000): 9–27.
"The Redefinition of Historical Scholarship: Calling a Tail a Leg?: Response," The Public Historian 21 (Spring 1999): 95–97.
"The Redefinition of Historical Scholarship: Calling a Tail a Leg?" The Public Historian 20 (Fall 1998): 43–57.
"Contested Terrain: History, Museums and the Public," The Public Historian
“Collecting a National Tragedy,” The Public Historian 20 (Fall 1998): 43–57.
“Collections Planning: Pinning Down a Strategy,” Museum News 81 (March/April 2002): 42–45,66–67.
“September 11 and the Mourning After: Reflections on Collecting and Interpreting the History of Tragedy," with Sarah M. Henry. The Public Historian 24 (Summer 2002): 37–52.
A Historical Guide to the United States, editor and contributor. (New York: W.W. Norton and Company, 1986).
Facts About Museums: An Assessment of Data on the Museum Community (Washington, D.C.: Institute of Museum and Library Services, 1998).