Publications

The list of selected staff publications may be searched by keyword or author and can be sorted by year.

"Working at Menlo Park." in William S. Pretzer (ed.), Working at Inventing: Thomas A. Edison and the Menlo Park Experience. Dearborn, MI: Henry Ford Museum & Greenfield Village, 1989 (reprint 2002), pp. 32–47.

Edison was supported in his work at Menlo Park by a number of assistants. This is an analysis of their backgrounds and their reasons for coming and leaving.

"The Search for a Vacuum," "Carbon and the Incandescent Lamp," "Who Invented the Incandescent Lamp?," "The Menlo Park Mystique." in Robert Friedel, Paul Israel, Bernard Finn, Edison's Electric Light: Biography of an Invention. New Brunswick: Rutgers University Press, 1985.

These are short, pointed essays in a book that provides a definitive account of Edison's invention.

<em>Artefacts</em>, Vol 2, Exposing Electronics Principal editor. Amsterdam: Harwood Academic Publishers, 2000.

There are several essays on the history of electronics, with an emphasis on the importance of loking at objects. There is also a section on museums with electrical collections.

"Reaching the Mass Audience: Business History as Popular History," in James O'Toole, ed., The Records of American Business (Chicago: Society of American Archivists, 1997)

Discusses the role of archival records, especially audio-visual materials, in such popular business history forms as exhibitions, licensed product reproductions, and print publications.

"The Last Revolution and the Next," Journal of Archival Organization, 2 (number 1/2), 2004.

Information and communications technologies have transformed the archival enterprise, changing the way we work and our relationship with the wider society. Access to archives has increased immeasurably and spurred demand for use of archives. At the same time, in a painful irony, public support for archival work is under attack. Archivists must continue to assert the case for archives in our larger civic life.

"Summary Remarks." Choices and Challenges: Collecting by Museums and Archives. Henry Ford Museum and Greenfield Village, 2002.

Comments on eight papers that examine issues in the acquisition of artifacts and archival materials by museums and archives. Urges attention to the social and civic role of our institutions and their holdings.

"Greeting Cards and American Consumer Culture," in The Gift as Material Culture (Yale-Smithsonian Reports on Material Culture, No. 4, 1995)

Greeting cards are associated with gift exchange and sentimentality while simultaneously belonging to a vast consumer industry.

"The Archives Center at the National Museum of American History: Connecting Archival Materials and Artifacts," Collections, 3 (number 2, Spring, 2007)
"How I Learned to Stop Worrying and Love the Artifact," Museum Archives Section Newsletter, Summer, 2005 
"Recent science: late-modern and post-modern." In The Historiography of Contemporary Science and Technology. Thomas Söderqvist, editor. (Harwood Academic Publications: London and Chur, 1997), pp. 179–213. Reprinted, with a few revisions, in Science Bought and Sold: Rethinking the Economics of Science. Philip Mirowski and E.-M. Sent, editors. (University of Chicago Press, 2002), pp. 109–148.

Essays identifying the features that distinguish knowledge production in postmodernity from the modern era, stressing the overproduction of all cultural goods, and the acceptance of bound and interested knowledge as fully legitimate knowledge. Direction of knowledge production by moral considerations is thus likewise legitimated, with ‘responsibility’ then appearing to gain primacy as normative category.

<em>Einstein: a Centenary Exhibition</em> with Paul A. Hanle. (Smithsonian Institution Press for National Museum of History and Technology, 1979), 48 pp.

Catalog of an special exhibition, 1979–80, in the Dibner Exhibition Gallery of the Museum featuring artists portraits of Einstein, manuscripts by him, and apparatus connected with tests of his special and general theories of relativity – notably a large torsion balance to test equivalence of gravitational and inertial mass constructed for Lorand Eötvös (lent by Museum for History and Science and Technology, Budapest), and a 1300 Kg aluminum cylinder deployed by Joseph Weber as gravitational wave antenna.

"Researching Rabi's Relics: Using the Electron to Determine Nuclear Moments before Magnetic Resonance, 1927–1937." Artefacts: Studies in the History of Science and Technology. vol.2: Exposing Electronics. Bernard Finn, editor. Amsterdam: Harwood Academic Publishers, 2000. pp. 161–174.

An overview of the technique of magnetic deflection of molecular beams employed by Columbia University physicist I. I. Rabi to determine spins and magnetic moments of atomic nuclei in the years before he invented the technique of nuclear magnetic resonance.

"Alfred Landé and the Anomalous Zeeman Effect, 1919–1921," Historical Studies in the Physical Sciences, 2: 153–261 (1970).

An account of the early career of German theoretical physicist Alfred Landé, with a close examination of the process by which he came to provide a quantum-theoretical, phenomenological accounting for the anomalous (classically inexplicable) effect upon the light emitted by atoms placed in magnetic fields – together with some reflections upon the inherent impossibility of retracing the conceptual steps to a discovery.

"Schrödinger, Erwin." in The Oxford Companion to the History of Science. New York: Oxford University Press, 2003. pp.733–34.

Brief biography of this early 20th -entury Austrian theoretical physicist with appraisals of his work, in particular disparaging his highly influential What Is Life? as of little value.

"Atom Smashers: Fifty Years': Preview of an Exhibit on the History of High Energy Accelerators," IEEE Trans. on Nuclear Science, NS-24: 1896–99 (1977).

Describes concept and content of a large exhibition on the history of particle accelerators and detectors, then in preparation, and on display until 1988.

"Scientific Internationalism and the Weimar Physicists: The Ideology and its Manipulation in Germany after World War I," Isis, 64: 151–180 (1973).

Explores internationalism as an element of the ideology of scientists, and the ways in which German physicists and other scholars reconciled that ideology with nationalistic attitudes and behaviors in the decade following World War I.

"Atomic Clocks': Preview of an Exhibit at the Smithsonian," Proceedings of the 36th Annual Frequency Control Symposium (U.S. Army Signal Research and Development Command, 1982), 220–22.

Describes concept and content of exhibition on the history of atomic clocks then in preparation, and on display until 1988.

"Swords into ploughshares': breaking new ground with radar hardware and technique in physical research after World War II." Reviews of Modern Physics, 67: 397–455 (1995).

A review of the many different areas of physical research in which the electronic hardware and the microwave techniques developed in World War II radar programs were fruitfully applied after the war. Special attention is given to the question of continuity vrs discontinuity in research directions from pre- to post-war as test of disciplinary autonomy. Some 500 references given.

"Atomichron®: The Atomic Clock from Concept to Commercial Product," Proceedings of the Institute of Electrical and Electronic Engineers, 73: 1181–1204 (1985).

Illustrated narrative account of the concept and realization of atomic frequency standards, 1873–1953, and, in greater detail, of development, 1953–56, of the first commercial atomic frequency standard. This device, tradenamed Atomichron®, incorporating the first vacuum-sealed cesium beam tube, resulted from the collaboration of MIT physicist Jerrold Zacharias, and his student R.T. Daly Jr, with the National [Radio] Company of Malden, Mass.

"The Atom Smashers," in The Smithsonian Book of Invention (Smithsonian Exposition Books, 1978), 132–139.

A narrative illustrated by dramatic photographs of the exhibition Atom smashers: fifty years, on display 1977-1988.

"The Fall of Parity." The Physics Teacher, 20: 281–88 (1982).

Illustrated narrative account, elaborating the descriptive labels in a like-named Museum exhibition, 1981–82, in which was displayed the apparatus used in 1956 by Ernest Ambler and collaborators at the National Institute of Standards and Technology to confirm experimentally the theoretical prediction by C.N. Yang and T.D. Lee of the non-conservation of parity in some nuclear processes (“weak interactions”).

"Behind quantum electronics: national security as basis for physical research in the United States, 1940–1960." Historical Studies in the Physical Sciences, 18: 149–229 (1987). Reprinted in Science and Society: The History of Modern Physical Science in the Twentieth Century. Peter Louis Galison, Michael Gordin, and David Kaiser, editors. 4 vols (New York : Routledge, 2001).

Gives various measures of the expansion of physical research in and following World War II and makes a broad case that it had the purpose and the result of reorienting that research toward refined and magnified effects, toward technique rather than toward concept, as this was where lay the interests of the national security agencies sponsoring that research.

"The Discovery of the Diffraction of X-rays by Crystals: A Critique of the Myths" Archive for History of Exact Sciences, 6: 38–71 (1969).

Argues that the usual accounts of the discovery of diffraction of X-rays by crystals in Munich in 1912 have rationalized that discovery by reading back into the minds of the discoverers an explanation of the observed effect that none of them then held, and that was only gradually and haltingly worked out after the discovery.

"Clocks, atomic." Instruments of science: an historical encyclopedia. Robert Bud and D. J. Warner, eds. (Garland Publishing Co.: New York and London, 1998), pp. 118–121.

An overview of the several types of atomic frequency standards with some attention to the historical sequence and context of their development.

"The Doublet Riddle and Atomic Physics circa 1924," Isis, 59: 156–174 (1968).

Argues that the usual accounts of the development of quantum theory have mistakenly supposed that the problems relating to the interaction and the analogies between matter and radiation out of which the quantum mechanics emerged in 1925 were also the problems that in the preceding years quantum theorists regarded as most central and indicative for the failure of classical mechanics.

Pages