Science & Mathematics

The Museum's collections hold thousands of objects related to chemistry, biology, physics, astronomy, and other sciences. Instruments range from early American telescopes to lasers. Rare glassware and other artifacts from the laboratory of Joseph Priestley, the discoverer of oxygen, are among the scientific treasures here. A Gilbert chemistry set of about 1937 and other objects testify to the pleasures of amateur science. Artifacts also help illuminate the social and political history of biology and the roles of women and minorities in science.

The mathematics collection holds artifacts from slide rules and flash cards to code-breaking equipment. More than 1,000 models demonstrate some of the problems and principles of mathematics, and 80 abstract paintings by illustrator and cartoonist Crockett Johnson show his visual interpretations of mathematical theorems.

The French lawyer and mathematician Pierre de Fermat (1601–1665) was one of the first to develop a systematic way to find the straight line which best approximates a curve at any point. This line is called the tangent line.
Description
The French lawyer and mathematician Pierre de Fermat (1601–1665) was one of the first to develop a systematic way to find the straight line which best approximates a curve at any point. This line is called the tangent line. This painting shows a curve with two horizontal tangent lines. Assuming that the curve is plotted against a horizontal axis, one line passes through a maximum of a curve, the other through a minimum. An article by H. W. Turnbull, "The Great Mathematicians," published in The World of Mathematics by James R. Newman, emphasized how Fermat's method might be applied to find maximum and minimum values of a curve plotted above a horizontal line (see his figures 14 and 16). Crockett Johnson owned and read the book, and annotated the first figure. The second figure more closely resembles the painting.
Computing the maximum and minimum value of functions by finding tangents became a standard technique of the differential calculus developed by Isaac Newton and Gottfried Leibniz later in the 17th century.
Curve Tangents is painting #12 in the Crockett Johnson series. It was executed in oil on masonite, completed in 1966, and is signed: CJ66. The painting has a wood and metal frame.
Location
Currently not on view
date made
1966
referenced
Fermat, Pierre de
painter
Johnson, Crockett
ID Number
1979.1093.07
catalog number
1979.1093.07
accession number
1979.1093
Two paintings in the Crockett Johnson collection concern the ancient problem of doubling the volume of a given cube, or the problem of Delos.
Description
Two paintings in the Crockett Johnson collection concern the ancient problem of doubling the volume of a given cube, or the problem of Delos. Crockett Johnson wrote of this problem: "Plutarch mentions it, crediting as his source a now lost version of the legend written by the third century BC Alexandrian Greek astronomer Eratosthenes, who first measured the size of the Earth. Suffering from plague, Athens sent a delegation to Delos, Apollo’s birthplace, to consult its oracle. The oracle’s instruction to the Athenians, to double the size of their cubical altar stone, presented an impossible problem. . . ."(p. 99). Hence the reference to the problem of Delos in the title of the painting.
Isaac Newton suggested a solution to the problem in his book Arithmetica Universalis, first published in 1707. His construction served as the basis of the painting. Newton’s figure, as redrawn by Crockett Johnson, begins with a base (OA), bisected at a point (B), with an equilateral triangle (OCB) constructed on one of the halves of the base. Newton then extended the sides of this triangle through one vertex. Placing a marked straightedge at one end of the base (O), he rotated the rule so that the distance between the two lines extended equaled the sides of the triangle (in the figure, DE = OB = BA = OC = BC). If these line segments are of length one, one can show that the line segment OD is of length equal to the cube root of two, as desired.
In Crockett Johnson’s painting, the line OA slants across the bottom and the line ODE is vertical on the left. The four squares drawn from the upper left corner (point E) have sides of length 1, the cube root of 2, the cube root of 4, and two. The distance DE (1) represents the edge of the side and the volume of a unit cube, while the sides of three larger squares represent the edge (the cube root of 2), the side (the square of the cube root of 2) and the volume (the cube of the cube root of two) of the doubled cube.
This oil painting on masonite is #56 in the series and dates from 1970. The work is signed: CJ70. It is inscribed on the back: PROBLEM OF DELOS (/) CONSTRUCTED FROM A SOLUTION BY (/) ISAAC NEWTON (ARITHMETICA UNIVERSALIS) (/) Crockett Johnson 1970. The painting has a wood and metal frame. For related documentation see 1979.3083.04.06. See also painting number 85 (1979.1093.55), with the references given there.
Reference: Crockett Johnson, “On the Mathematics of Geometry in My Abstract Paintings,” Leonardo 5 (1972): pp. 98–9.
date made
1970
referenced
Newton, Isaac
painter
Johnson, Crockett
ID Number
1979.1093.36
catalog number
1979.1093.36
accession number
1979.1093
In 1966, Crockett Johnson carefully read Nathan A. Court's book College Geometry, selecting diagrams that he thought would be suitable for paintings. In the chapter on harmonic division, he annotated several figures that relate to this painting.
Description
In 1966, Crockett Johnson carefully read Nathan A. Court's book College Geometry, selecting diagrams that he thought would be suitable for paintings. In the chapter on harmonic division, he annotated several figures that relate to this painting. The work shows two orthoganol circles, that is to say two circles in which the square of the line of centers equals the sum of the squares of the radii. A right triangle formed by the line of centers and two radii that intersect is shown. The small right triangle in light purple in the painting is this triangle.
Crockett Johnson's painting combines a drawing of this triangle with a more complex figure used in a discussion of further properties of lines drawn in orthoganal circles. In particular, suppose that one draws a line segment from a point outside a circle that intersects it in two points, and selects a fourth point on the line that divides the segment harmonically. For a single exterior point, all these such points lie on a single line, perpendicular to the line of centers of the two circles, which is called the polar line.
The painting is #38 in the series. It has a background in two shades of cream, and a light tan wooden frame. It shows two circles that overlap slightly and have various sections. The circles are in shades of blue, purple and cream. The painting is signed: CJ66.
References: Nathan A. Court, College Geometry (1964 printing), p. 175–78. This volume was in Crockett Johnson's library.
T. L. Heath, ed., Apollonius of Perga: Treatise on Conic Sections (1961 reprint). This volume was not in Crockett Johnson's library.
Location
Currently not on view
date made
1966
referenced
Apollonius of Perga
painter
Johnson, Crockett
ID Number
1979.1093.26
catalog number
1979.1093.26
accession number
1979.1093
Two polygons are said to be homothetic if they are similar and their corresponding sides are parallel.
Description
Two polygons are said to be homothetic if they are similar and their corresponding sides are parallel. If two polygons are homothetic, then the lines joining their corresponding vertices meet at a point.
The diagram on which this painting is based is intended to illustrate the homothetic nature of two polygons ABCDE . . . and A'B'C'D'E' . . . From the title, it appears that Crockett Johnson wished to call attention of homothetic triangular pairs ABS and A'B'S, BCS and B'C'S, CDS and C'D'S, DES and D'E'S, etc. The painting follows a diagram that appears in Nathan A. Court's College Geometry (1964 printing). Court's diagram suggests how one constructs a polygon homothetic to a given polygon. Hippocrates of Chios, the foremost mathematician of the fifth century BC, knew of similarity properties, but there is no evidence that he dealt with the concept of homothecy.
To illustrate his figure, the artist chose four colors; red, yellow, teal, and purple. He used one tint and one shade of each of these four colors. The larger polygon is painted in tints while the smaller polygon is painted in shades. The progression of the colors follows the order of the color wheel, and the black background enhances the vibrancy of the painting.
Homothetic Triangles, painting #17 in the Crockett Johnson series, is painted in oil on masonite. The work was completed in 1966 and is signed: CJ66. It is inscribed on the back: Crockett Johnson 1966 (/) HOMOTHETIC TRIANGLES (/) (HIPPOCRATES OF CHIOS). It has a black wooden frame.
References: Court, Nathan A., College Geometry, (1964 printing), 38-9.
van der Waarden, B. L., Science Awakening (1954 printing), 131-136.
Location
Currently not on view
date made
1966
referenced
Hippocrates of Chios
painter
Johnson, Crockett
ID Number
1979.1093.11
catalog number
1979.1093.11
accession number
1979.1093
Crockett Johnson used a wide range of geometrical constructions as the basis for his paintings.
Description
Crockett Johnson used a wide range of geometrical constructions as the basis for his paintings. This painting is based on a method of constructing a rectangle equal in area to a given rectangle, given one side of the rectangle to be constructed.
In the painting, suppose that the cream-colored rectangle on the bottom left is given, as well as a line segment extending from the upper right corner of it. Construct the small triangle on the upper left. Draw the three horizontal lines shown, as well as the diagonal of the rectangle constructed. Extend this diagonal until it meets the bottom line, creating another triangle. The length of the base of this triangle will be the side of the rectangle desired. This rectangle is on the upper right in the painting.
This construction has been associated with the ancient Pythagoreans. Crockett Johnson may well have learned it from Evans G. Valens, The Number of Things. The drawing on page 121 of this book is annotated, although the annotations are faint.
The oil painting is #48 in the series. It has a black background and a black wooden frame, with the two equal triangles in light shades. The painting is signed on the front: CJ69. It is signed on the back: RECTANGLES OF EQUAL AREA (/) (PYTHAGORAS) (/) Crockett Johnson 1969.
Location
Currently not on view
date made
1969
referenced
Pythagoras
painter
Johnson, Crockett
ID Number
1979.1093.34
catalog number
1979.1093.34
accession number
1979.1093
The mathematician Euclid lived around 300 BC, probably in Alexandria in what is now Egypt. Like most western scholars of his day, he wrote in Greek. Euclid prepared an introduction to mathematics known as The Elements.
Description
The mathematician Euclid lived around 300 BC, probably in Alexandria in what is now Egypt. Like most western scholars of his day, he wrote in Greek. Euclid prepared an introduction to mathematics known as The Elements. It was an eminently successful text, to the extent that most of the works he drew on are now lost. Translations of parts of The Elements were used in geometry teaching well into the nineteenth century in both Europe and the United States.
Euclid and other Greek geometers sought to prove theorems from basic definitions, postulates, and previously proven theorems. The book examined properties of triangles, circles, and more complex geometric figures. Euclid's emphasis on axiomatic structure became characteristic of much later mathematics, even though some of his postulates and proofs proved inadequate.
To honor Euclid's work, Crockett Johnson presented not a single mathematical result, but what he called a bouquet of triangular theorems. He did not state precisely which theorems relating to triangles he intended to illustrate in his painting, and preliminary drawings apparently have not survived. At the time, he was studying and carefully annotating Nathan A. Court's book College Geometry (1964). Court presents several theorems relating to lines through the midpoints of the side of a triangle that are suggested in the painting. The midpoints of the sides of the large triangle in the painting are joined to form a smaller one. According to Euclid, a line through two midpoints of sides of a triangle is parallel to the third side. Thus the construction creates a triangle similar to the initial triangle, with one fourth the area (both the height and the base of the initial triangle are halved). In the painting, triangles of this smaller size tile the plane. All three of the lines joining midpoints create triangles of this small size, and the large triangle at the center has an area four times as great.
The painting also suggests properties of the medians of the large triangle, that is to say, the lines joining each midpoint to the opposite vertex. The three medians meet in a point (point G in the figure from Court). It is not difficult to show that point G divides each median into two line segments, one twice as long as the other.
To focus attention on the large triangle, Crockett Johnson executed it in shades of white against a background of smaller dark black and gray triangles.
Bouquet of Triangle Theorems apparently is the artist's own construction. It was painted in oil or acrylic and is #26 in the series. It was completed in 1966 and is signed: CJ66. It is signed on the back: Crockett Johnson 1966 (/) BOUQUET OF TRIANGLE THEOREMS (/) (EUCLID).
Reference: Nathan A. Court, College Geometry, (1964 printing), p. 65. The figure on this page is not annotated.
Location
Currently not on view
date made
1966
referenced
Euclid
painter
Johnson, Crockett
ID Number
1979.1093.19
catalog number
1979.1093.19
accession number
1979.1093
Toward the end of his life, Crockett Johnson took up the problem of constructing a regular seven-sided polygon or heptagon. This construction, as Gauss had demonstrated, requires more than a straight edge and compass.
Description
Toward the end of his life, Crockett Johnson took up the problem of constructing a regular seven-sided polygon or heptagon. This construction, as Gauss had demonstrated, requires more than a straight edge and compass. Crockett Johnson used compass and a straight edge with a unit length marked on it. Archimedes and Newton had suggested that constructions of this sort could be used to trisect the angle and to find a cube with twice the volume of a given cube, and Crockett Johnson followed their example.
One may construct a heptagon given an angle of pi divided by seven. If an isosceles triangle with this vertex angle is inscribed in a circle, the base of the triangle will have the length of one side of a regular heptagon inscribed in that circle. According to Crockett Johnson's later account, in the fall of 1973, while having lunch in the city of Syracuse on Sicily during a tour of the Mediterranean, he toyed with seven toothpicks, arranging them in various patterns. Eventually he created an angle with his menu and wine list and arranged the seven toothpicks within the angle in crisscross patterns until his arrangement appeared as is shown in the painting.
Crockett Johnson realized that the vertex angle of the large isosceles triangle shown is exactly π/7 radians, as desired. The argument suggested by his diagram is more complex than what he later published. The numerical results shown in the figure suggest his willingness to carry out detailed calculations.
Heptagon from its Seven Sides, painted in 1973 and #107 in the series, shows a triangle with purple and white sections on a navy blue background. This oil or acrylic painting on masonite is signed on its back : HEPTAGON FROM (/) ITS SEVEN SIDES (/) (Color sketch for larger painting) (/) Crockett Johnson 1973. No larger painting on this pattern is at the Smithsonian.
Reference: Crockett Johnson, "A Construction for a Regular Heptagon," Mathematical Gazette, 1975, vol. 59, pp. 17–21.
Location
Currently not on view
date made
1973
painter
Johnson, Crockett
ID Number
1979.1093.74
catalog number
1979.1093.74
accession number
1979.1093
This oil painting on pressed wood, #52 in the series, shows an original construction of Crockett Johnson. He executed this work in 1968, three years after he began creating mathematical paintings.
Description
This oil painting on pressed wood, #52 in the series, shows an original construction of Crockett Johnson. He executed this work in 1968, three years after he began creating mathematical paintings. It is evident that the artist was very proud of this construction because he drew four paintings dealing with the problem of squaring the circle. The construction was part of Crockett Johnson's first original mathematical work, published in The Mathematical Gazette in early 1970. A diagram relating to the painting was published there.
To "square a circle," mathematically speaking, is to construct a square whose area is equal to that of a given circle using only a straightedge (an unmarked ruler) and a compass. It is an ancient problem dating from the time of Euclid and is one of three problems that eluded Greek geometers and continued to elude mathematicians for 2,000 years. In 1880, the German mathematician Ferdinand von Lindermann showed that squaring a circle in this way is impossible - pi is a transcendental number. Because this proof is complicated and difficult to understand, the problem of squaring a circle continues to attract amateur mathematicians like Crockett Johnson. Although he ultimately understood that the circle cannot be squared with a straightedge and compass, he managed to construct an approximate squaring.
Crockett Johnson began his construction with a circle of radius one. In this circle he inscribed a square. Therefore, in the figure, AO=OB=1 and OC=BC=√(2) / 2. AC=AO+OC=1 + √(2) / 2 and AB=√(AC² + BC²) which equals the square root of the quantity (2+√(2)). Crockett Johnson let N be the midpoint of OT and constructed KN parallel to AC. K is thus the midpoint of AB, and KN=AO - (AC)/2=1/2 - √(2) / 4. Next, he let P be the midpoint of OG, and he drew KP, which intersects AO at X. Crockett Johnson then computed NP=NO+OP=(√(2))/4+(1/2). Triangle POX is similar to triangle PNK, so XO/OP=KN/NP. From this equality it follows that XO=(3-2√(2))/2.
Also, AX=AO-XO=(2√(2)-1)/2 and XC=XO+OC=(3-√(2))/2. Crockett Johnson continued his approximation by constructing XY parallel to AB. It is evident that triangle XYC is similar to triangle ABC, and so XY/XC=AB/AC. This implies that XY=[√((2+√(2)) × (8-5√(2))]/2. Finally he constructed XZ=XY and computed AZ=AX+XZ=[2√(2)-1+(√(2+√(2)) × (8-5√(2))]/2 which approximately equals 1.7724386. Crockett Johnson knew that the square root of pi approximately equals 1.772454, and thus AZ is approximately equal to √(Π) - 0.000019. Knowing this value, he constructed a square with each side equal to AZ. The area of this square is (AZ)² = 3.1415258. This differs from the area of the circle by less than 0.0001. Thus, Crockett Johnson approximately squared the circle.
The painting is signed: CJ68. It is marked on the back: SQUARED CIRCLE* (/) Crockett Johnson 1968 (/) FLAT OIL ON PRESSED WOOD) (/) MATHEMATICALLY (/) DEMONSTRATED (/) TO √π + 0.000000001. It has a white wooden frame. Compare to painting #91 (1979.1093.60).
References: Crockett Johnson, “On the Mathematics of Geometry in My Abstract Paintings,” Leonardo 5 (1972): p. 98.
C. Johnson, “A Geometrical look at √π," Mathematical Gazette, 54 (1970): p. 59–60. the figure is from p. 59.
Location
Currently not on view
date made
1968
painter
Johnson, Crockett
ID Number
1979.1093.35
catalog number
1979.1093.35
accession number
1979.1093
A transversal is a line that intersects a system of other lines or line segments. Here Crockett Johnson explores the properties of certain transversals of the sides of a triangle.
Description
A transversal is a line that intersects a system of other lines or line segments. Here Crockett Johnson explores the properties of certain transversals of the sides of a triangle. The Italian mathematician Giovanni Ceva showed in 1678 that lines drawn from a point to the vertices of a triangle divide the edges of the triangle into six segments such that the product of the length of three nonconsecutive segments equals the product of the remaining three segments.
This painting shows a triangle (in white), lines drawn from a point inside the triangle to the three vertices, and a line drawn from a point outside the triangle (toward the bottom of the painting) to the three vertices. Segments of the sides of the triangle to be multiplied together are of like color. Crockett Johnson's painting combines two diagrams on page 159 of Nathan Court's College Geometry (1964 printing). These diagrams are annotated in his copy of the volume. Several of the triangles adjacent to the central triangle were used by Court in his proof of Ceva's theorem.
The painting is #31 in the series. It is signed: CJ66. There is a wooden frame painted off-white.
Location
Currently not on view
date made
1966
referenced
Ceva, Giovanni
painter
Johnson, Crockett
ID Number
1979.1093.22
catalog number
1979.1093.22
accession number
1979.1093
This painting reflects Crockett Johnson's enduring fascination with square roots and squaring.
Description
This painting reflects Crockett Johnson's enduring fascination with square roots and squaring. As the title suggests, it includes four squares whose areas are 1, 2, 3, and 4 square units, and seven line segments whose lengths are the square roots of 2, 3, 4, 5, 6, 7, and 8.
One may construct these squares and square roots by alternate applications of the Pythagorean theorem to squares running along the diagonal of the painting, and to rectangles running across the top (not all the rectangles are shown). More specifically, assume that the light-colored square in the upper left corner of the painting has side of length 1 (which equals the square root of 1). Then the diagonal is the square root of two, and a quarter circle with this radius centered at upper left corner cuts the sides of the square extended to determine two sides of a second, larger square. The area of this square (shown in the painting) is the square of the square root of 2, or two.
One can then consider the rectangle with side one and base square root of two that is in the upper left of the painting. It will have sides one and the square root of 2, and hence diagonal of length equal to the square root of three. The diagonal is not shown, but an circular arc with this radius forms the second arc in the painting. It determines the sides of a square with side equal to the square root of three and area 3. It also forms a rectangle with sides of length one and the square root of 4 (or two). This gives the third arc and the largest square in the painting.
By continuing the construction (further squares and rectangles are not shown), Crockett Johnson arrived at portions of circular arcs that cut the diameter at distances of the square roots of 5, 6, 7, and 8. Only one point on the last arc is shown. It is at the lower right corner of the painting.
Crockett Johnson executed the work in various shades and tints from his starting point at the white and pale-blue triangle to darker blues at the opposite corner.
This oil painting on masonite is not signed and its date of completion is unknown. It is #97 in the series.
Location
Currently not on view
date made
1970-1975
painter
Johnson, Crockett
ID Number
1979.1093.65
catalog number
1979.1093.65
accession number
1979.1093
This is the third painting by Crockett Johnson to represent the motion of bodies released from rest from a common point and moving along different inclined planes.
Description
This is the third painting by Crockett Johnson to represent the motion of bodies released from rest from a common point and moving along different inclined planes. In the Dialogues Concerning Two New Sciences (1638), Galileo argued that the points reached by the balls at a given time would lie on a circle. Two such circles and three inclined planes, as well as a vertical line of direct fall, are indicated in the painting. One circle has half the diameter of the other. Crockett Johnson also joins the base of points on the inclined planes to the base of the diameters of the circles, forming two sets of right triangles.
This oil painting on masonite is #96 in the series. It has a black background and a wooden and metal frame. It is signed on the back: VELOCITIES AND RIGHT TRIANGLES (GALILEO) (/) Crockett Johnson 1972. Compare to paintings #42 (1979.1093.30) and #71 (1979.1093.46), as well as the figure from Valens, The Attractive Universe: Gravity and the Shape of Space (1969), p. 135.
Location
Currently not on view
date made
1972
referenced
Galilei, Galileo
painter
Johnson, Crockett
ID Number
1979.1093.64
catalog number
1979.1093.64
accession number
1979.1093
This painting is part of Crockett Johnson's exploration of the properties of the heptagon, extended to include a 14-sided regular polygon. The design of the painting is shown in his figure, which includes many of the line segments in the painting.
Description
This painting is part of Crockett Johnson's exploration of the properties of the heptagon, extended to include a 14-sided regular polygon. The design of the painting is shown in his figure, which includes many of the line segments in the painting. Here Crockett Johnson argues that the triangle ABF in the figure is the one he sought, with angle FAB being one seventh of pi. Segment CD in the figure, which appears in the painting, is the length of the edge of a regular 14-sided figure inscribed in a portion of the larger circle shown.
The painting, of oil or acrylic on masonite, is number 105 in the series. It is drawn in shades of cream, blue, and purple on a light purple background. It has a metal frame and is unsigned.
Location
Currently not on view
date made
ca 1973
painter
Johnson, Crockett
ID Number
1979.1093.72
catalog number
1979.1093.72
accession number
1979.1093
To "square" a figure, according to the classical Greek tradition, means to construct, with the aid of only straightedge and compass, a square equal in area to that of the figure. The Greeks could square numerous figures, but were unsuccessful in efforts to square a circle.
Description
To "square" a figure, according to the classical Greek tradition, means to construct, with the aid of only straightedge and compass, a square equal in area to that of the figure. The Greeks could square numerous figures, but were unsuccessful in efforts to square a circle. It was not until the 19th century that the impossibility of squaring a circle was demonstrated.
This painting is an original construction by Crockett Johnson. It begins with the assumprion that the circle has been squared. In this case, Crockett Johnson performed a sequence of constructions that produce several additional squares, rectangles, and circles whose areas are geometrically related to that of the original circle. These figures are produced using traditional Euclidean geometry, and require only straightedge and compass.
The painting on masonite is #102 in the series. It has a blue-black background and a metal frame. It shows various superimposed sections of circles, squares, and rectangles in shades of light blue, dark blue, purple, white and blue-black. It is unsigned. See 1979.3083.02.13.
References: Carl B. Boyer and Uta C. Merzbach, A History of Mathematics (1991), Chapter 5.
Crockett Johnson, "A Geometrical Look at the Square Root of Pi," Mathematical Gazette 54 (February, 1970): pp. 59–60.
Location
Currently not on view
date made
ca 1970
painter
Johnson, Crockett
ID Number
1979.1093.69
catalog number
1979.1093.69
accession number
1979.1093
This creation, similar to works #22 (1979.1093.16) and #76 (1979.1093.50), is a further example of Crockett Johnson's work relating to Kepler's first two laws of planetary motion.
Description
This creation, similar to works #22 (1979.1093.16) and #76 (1979.1093.50), is a further example of Crockett Johnson's work relating to Kepler's first two laws of planetary motion. The ellipse represents the path of a planet and the white sections represent equal areas swept out in equal times. This work is a silk screen on paper. It is number 99 in the series, and is signed in the right corner: Crockett Johnson (/) 67. It draws on a figure from The World of Mathematics by James R. Newman.
Location
Currently not on view
date made
1967
referenced
Kepler, Johannes
painter
Johnson, Crockett
ID Number
1979.1093.66
catalog number
1979.1093.66
accession number
1979.1093
This oil painting on paper by Talchi "Terry" Miura depicts a man in a white lab coat flipping a switch to send a stream of electricity into a giant tomato with bolts and stitches.The use of a tomato in the painting likely refers to the Flavr Savr, the first genetically engineered
Description (Brief)
This oil painting on paper by Talchi "Terry" Miura depicts a man in a white lab coat flipping a switch to send a stream of electricity into a giant tomato with bolts and stitches.
The use of a tomato in the painting likely refers to the Flavr Savr, the first genetically engineered food to become widely available in the United States. In the mid-1980s, scientists at the California biotech company Calgene altered tomatoes, interfering with their production of an enzyme that causes softening. At the time, growers picked mass-market tomatoes while still green. Later they induced the produce to ripen by spraying it with ethylene gas. Firm, green tomatoes transported well but lacked “vine-ripened” flavor. Calgene marketed the Flavr Savr as a fruit picked at the peak of ripeness that could remain firm through travel to grocery store shelves.
Although some groups voiced concerns, the Flavr Savr was generally well received despite costing twice the price of a regular tomato. In the years leading up to its release in May 1994, Calgene openly publicized its research and asked the FDA to release a statement about the tomato’s safety. Open communication and the company’s willingness to label the Flavr Savr as genetically modified seems to have contributed to the Flavr Savr’s acceptance and success.
Regardless of its generally positive reception, the tomato was only available for three years. Calgene, a small biotech company, stumbled when faced with the realities of large-scale commercial horticulture. By 1997 Calgene rival Monsanto had purchased a large portion of the company and pulled the Flavr Savr from the market.
Miura’s painting, with its Frankenstein’s monster of a tomato, signals the growing fears over genetically modified organisms (GMOs) in the years to come. Some GMOs, particularly those released by Monsanto, were quite commercially successful. Nevertheless, refusal by companies to label GMOs has inspired public distrust of these products. The term “Frankenfood,” coined in the early 1980s, was increasingly used to negatively refer to GMO products from the mid-1990s through the early 2000s.
Sources:
Dan Charles, “The Tomato That Ate Calgene” in Lords of the Harvest: Biotech, Big Money, and The Future of Food (Cambridge: Basic Books, 2002): 126–48.
Michael Winerip, “You Call That A Tomato?” New York Times, June 24, 2013, accessed October 9, 2012, http://www.nytimes.com/2013/06/24/booming/you-call-that-a-tomato.html.
Location
Currently not on view
date made
before 1994
ID Number
1994.3002.01
nonaccession number
1994.3002
catalog number
1994.3002.01
This piece is a further example of Crockett Johnson's exploration of Kepler’s first two laws of planetary motion. The ellipse represents the path of a planet, and the white sections represent equal areas swept out in equal times.
Description
This piece is a further example of Crockett Johnson's exploration of Kepler’s first two laws of planetary motion. The ellipse represents the path of a planet, and the white sections represent equal areas swept out in equal times. This work, a silk screen inked on paper board, is signed: CJ66. It is #76 in the series, and it echoes painting #22 (1979.1093.16) and painting #99 (1979.1093.66).
Location
Currently not on view
date made
1966
referenced
Kepler, Johannes
painter
Johnson, Crockett
ID Number
1979.1093.50
catalog number
1979.1093.50
accession number
1979.1093
The Belgian physicist Joseph Plateau (1801–1883) performed a sequence of experiments using soap bubbles. One investigation led him to show that when two soap bubbles join, the two exterior surfaces and the interface between the two bubbles will all be spherical segments.
Description
The Belgian physicist Joseph Plateau (1801–1883) performed a sequence of experiments using soap bubbles. One investigation led him to show that when two soap bubbles join, the two exterior surfaces and the interface between the two bubbles will all be spherical segments. Furthermore, the angles between these surfaces will be 120 degrees.
Crockett Johnson's painting illustrates this phenomenon. It also displays Plateau's study of the situation that arises when three soap bubbles meet. Plateau discovered that when three bubbles join, the centers of curvature (marked by double circles in the figure) of the three overlapping surfaces are collinear.
This painting was most likely inspired by a figure located in an article by C. Vernon Boys entitled "The Soap-bubble." James R. Newman included this essay in his book entitled The World of Mathematics (p. 900). Crockett Johnson had this publication in his personal library, and the figure in his copy is annotated.
The artist chose several pastel shades to illustrate his painting. This created a wide range of shades and tints that allows the painting to appear three-dimensional. Crockett Johnson chose to depict each sphere in its entirety, rather than showing just the exterior surfaces as Boys did. This helps the viewer visualize Plateau's experiment.
This painting was executed in oil on masonite and has a wood and chrome frame. It is #23 in the series. It was completed in 1966 and is signed: CJ66. It is marked on the back: Crockett Johnson 1966 (/) GEOMETRY OF A TRIPLE BUBBLE (/) (PLATEAU).
Location
Currently not on view
date made
1966
referenced
Plateau, Joseph
painter
Johnson, Crockett
ID Number
1979.1093.17
catalog number
1979.1093.17
accession number
1979.1093
This oil painting is based on a figure from Galileo Galilee's Dialogues Concerning Two New Sciences (1638), Book 3. Here Galileo discussed the time of descent of bodies rolling without friction along inclined planes.
Description
This oil painting is based on a figure from Galileo Galilee's Dialogues Concerning Two New Sciences (1638), Book 3. Here Galileo discussed the time of descent of bodies rolling without friction along inclined planes. He argued that if from the highest point in a vertical circle there be drawn any inclined planes meeting the circumference of the circle, the times of descent along these chords are equal to one another. This painting shows two inclined planes drawn from the highest point of a vertical circle, with a ball moving along each chord. Crockett Johnson probably became familiar with Galileo's figure by examining the translation of part of his book published in James R. Newman, The World of Mathematics, vol. 2, New York: Simon and Schuster, 1956, p. 751–52. This volume was in Crockett Johnson's library. The figure on p. 752 is annotated.
The painting has a gray background and a metal and wooden frame. It shows two superimposed triangles (inclined planes), one reddish purple, and the other smaller one blue. Both of these triangles are inscribed in the same white circular arc. A light purple circle is shown near the bottom of the purple triangle, and a light blue circle near the bottom of the blue triangle.
The work is # 42 in the series. It is signed: CJ66. Compare to paintings #96 (1979.1093.64) and #71 (1979.1093.46).
Location
Currently not on view
date made
1966
referenced
Galilei, Galileo
painter
Johnson, Crockett
ID Number
1979.1093.30
catalog number
1979.1093.30
accession number
1979.1093
Two circles or other similar figures can be placed such that a line drawn from some fixed point to a point of one of them passes through a point on the other, such that the ratio of the distances from the fixed point to the two points is always the same.
Description
Two circles or other similar figures can be placed such that a line drawn from some fixed point to a point of one of them passes through a point on the other, such that the ratio of the distances from the fixed point to the two points is always the same. The fixed point is called the center of similitude. The circles shown in this painting have two centers of similitude, one between the circles and one to the right (the center of similitude between the circles is shown). Crockett Johnson apparently based his painting on a diagram from the book College Geometry by Nathan Altshiller Court (1964 printing). This diagram is annotated in his copy of the book. In the figure, the larger circle has center A, the smaller circle has center B, and the centers of similitude are the points S and S'. S is called the external center of similitude and S' is the internal center of similitude. The painting suggests several properties of centers of similitude. For example, lines joining corresponding endpoints of parallel diameters of the two circles, such as TT' in the figure, would meet at the external center of similitude. Lines joining opposite endpoints meet at the internal center of similitude.
This painting emphasizes the presence of the two circles and line segments relating to centers of similitude, but not the centers themselves. Indeed, the painting is too narrow to include the external center of similitude.
Some properties of centers of similitude were known to the Greeks. More extensive theorems were developed by the mathematician Gaspard Monge (1746–1818). It is not entirely clear why Crockett Johnson associated the painting with the artist and mathematician Phillipe de la Hire (1640–1718). A bibliographic note in the relevant section of Court reads: LHr., p. 42, rem. 8. However, Court was referring to an 1809 book by Simon A. J. LHuiler on the elements of analytic geometry.
This oil painting on masonite is #14 in Crockett Johnson's series. It was completed in 1966 and is signed: CJ66.
References: R. J. Archibald, "Centers of Similitude of Circles," American Mathematical Monthly, 22, #1 (1915), pp. 6–12; unpublished notes of J. B. Stroud.
Location
Currently not on view
date made
1966
referenced
de la Hire, Phillipe
painter
Johnson, Crockett
ID Number
1979.1093.09
catalog number
1979.1093.09
accession number
1979.1093
This is one of three very similar Crockett Johnson paintings closely related to the construction of a side of an inscribed regular heptagon which the artist published in The Mathematical Gazette in 1975.
Description
This is one of three very similar Crockett Johnson paintings closely related to the construction of a side of an inscribed regular heptagon which the artist published in The Mathematical Gazette in 1975. The paper presents a way of producing an isosceles triangle with angles in the ratio 3:3:1, so that the smallest angle in the triangle is π / 7. This angle is then inscribed in a large circle, and intercepts an arc length of π/7. A central angle of the same circle intercepts twice the angle, that is to say 2π/7, and the corresponding chord the side of an inscribed heptagon.
Crockett Johnson described the construction of his isosceles triangle in the diagram shown. The horizontal line segment below the circle on the painting corresponds to unit length BF in the figure, and the largest triangle in the painting is triangle is ABF in the figure, with vertex angle equal to one seventh of pi. This angle is inscribed in the large circular arc KDC. The side of the heptagon is the chord KC.
This version of Crockett Johnson's construction of a heptagon is #115 in the series. It has a dark blue background and a wood and metal frame. The painting is an oil or acrylic on masonite. The work is unsigned. See also #108 (335571) and #117 (1979.1093.79).
References: Crockett Johnson, “A Construction for a Regular Heptagon,” Mathematical Gazette, 1975, vol. 59, pp. 17–21.
Location
Currently not on view
date made
ca 1975
painter
Johnson, Crockett
ID Number
1979.1093.77
accession number
1979.1093
catalog number
1979.1093.77
Three very similar paintings in the Crockett Johnson collection are closely related to the construction of a side of an inscribed regular a heptagon which he published in The Mathematical Gazette in 1975.
Description
Three very similar paintings in the Crockett Johnson collection are closely related to the construction of a side of an inscribed regular a heptagon which he published in The Mathematical Gazette in 1975. The paper presents a way of producing an isosceles triangle with angles in the ratio 3:3:1, so that the smallest angle in the triangle is π/7. This angle is then inscribed in a large circle, and intercepts an arc length of π/7. A central angle of the same circle intercepts twice the angle, that is to say 2π/7, and the corresponding chord the side of an inscribed heptagon.
Crockett Johnson described the construction of his isosceles triangle in the diagram shown in the image. The horizontal line segment below the circle on the painting corresponds to unit length BF in the figure, and the triangle is ABF. The light colors of the painting highlight important points in the construction - marking off an arc of radius equal to the square root of 2 with center F, measuring the unit length AO along a marked straight edge that passes through B and ends at point A on the perpendicular bisector, and finding the side of the regular inscribed heptagon.
This version of the construction of a heptagon is #108 in the series. The oil painting on masonite with chrome frame was completed in 1975 and is unsigned. It is marked on the back: Construction of the Heptagon (/) Crockett Johnson 1975. See also paintings #115 (1979.1093.77) and #117 (1979.1093.79) in the series.
Reference: Crockett Johnson, "A Construction for a Regular Heptagon," Mathematical Gazette, 1975, vol. 59, pp.17–21.
Location
Currently not on view
date made
1975
painter
Johnson, Crockett
ID Number
MA.335571
accession number
322732
catalog number
335571
In the late 1960s and early 1970s, the American cartoonist Crockett Johnson created a series of paintings on mathematical subjects.
Description
In the late 1960s and early 1970s, the American cartoonist Crockett Johnson created a series of paintings on mathematical subjects. This oil painting, #74 in the series, dates from 1969 and is signed "CJ69." It is based on a theorem in plane geometry proved by the English-born mathematician Frank Morley (1860–1937). Morley emigrated to the United States and taught at Haverford College and Johns Hopkins University.
The painting illustrates his best-known result. It shows lines that divide the three angles of the large triangle into three equal parts. Lines coming from different vertices of the triangle meet in points. The triangle formed by joining the intersections of the trisectors, which lie nearest to the three sides of the triangle, is shown in white in the painting. According to Morley's theorem, this is an equilateral triangle.
Date made
1969
painter
Johnson, Crockett
ID Number
1979.1093.48
catalog number
1979.1093.48
accession number
1979.1093
The concept of a harmonic set of points can be traced back through Girard Desargues (1591–1661) and Pappus of Alexandria (3rd century AD) to Apollonius of Perga (240–190 BC). Crockett Johnson's painting seems to be based upon a figure associated with Pappus.
Description
The concept of a harmonic set of points can be traced back through Girard Desargues (1591–1661) and Pappus of Alexandria (3rd century AD) to Apollonius of Perga (240–190 BC). Crockett Johnson's painting seems to be based upon a figure associated with Pappus. It is likely that Crockett Johnson was inspired by a figure found in H. W. Turnbull's article "The Great Mathematicians" found in his copy of James R. Newman's The World of Mathematics, p. 111. This figure is annotated.
The construction begins with a given set of collinear points (A, B, and Y). An additional point (W) is sought such that AW, AB, and AY are in harmonic progression. That is, the terms AW, AB, and AY represent a progression of terms whose reciprocals form an arithmetic progression. To do this, any point Z, not on line AB, is chosen, and line segments ZA and ZB are constructed. Next, any point D, on ZA, is chosen, and DY, which will intersect ZB at C, is constructed. AC and DB intersect each other at X, and ZX will intersect AB at W. The location of point W is entirely independent of the choice of points Z and D. It follows that AW, AB, and AY form a harmonic progression, and thus the points A, W, B, and Y form a harmonic set.
Crockett Johnson flipped the annotated image for his painting. The boldest portion of his painting, and thus the area with greatest interest, is the quadrilateral ABCD. In addition, the background of his painting is divided into three differently colored sections to illustrate the harmonic series constructed from the quadrilateral. This careful color choice reinforces the painting's title.
This painting was executed in oil on masonite and is painting #24 in the series. It was completed in 1966 and is signed: CJ66. It is marked on the back: Crockett Johnson 1966 (/) HARMONIC SERIES FROM A QUADRILATERAL (/) (PAPPUS). It has a gray wooden frame.
Location
Currently not on view
date made
1966
referenced
Pappus
painter
Johnson, Crockett
ID Number
1979.1093.18
catalog number
1979.1093.18
accession number
1979.1093
Mathematicians have explored the properties of polyhedra since ancient times, but it was the Swiss scholar Leonhard Euler (1707–1783) who proved the formula V-E+F = 2. That is, for a simple convex polyhedron (e.g.
Description
Mathematicians have explored the properties of polyhedra since ancient times, but it was the Swiss scholar Leonhard Euler (1707–1783) who proved the formula V-E+F = 2. That is, for a simple convex polyhedron (e.g. one with no holes, so that it can be deformed into a sphere) the number of vertices minus the number of edges plus the number of faces is two. An equivalent formula had been presented by Descartes in an unpublished treatise on polyhedra. However, this formula was first proved and published by Euler in 1751 and bears his name.
Crockett Johnson's painting echoes a figure from a presentation of Euler's formula found in Richard Courant and Herbert Robbins's article “Topology,” which is in James R. Newman's The World the Mathematics (1956), p. 584. This book was in the artist’s library, but the figure that relates to this painting is not annotated.
To understand the painting we must understand the mathematical argument. It starts with a hexahedron, a simple, six-sided, box-shaped object. First, one face of the hexahedron is removed, and the figure is stretched so that it lies flat (imagine that the hexahedron is made of a malleable substance so that it can be stretched). While stretching the figure can change the length of the edges and the area and shape of the faces, it will not change the number of vertices, edges, or faces.
For the "stretched" figure, V-E+F = 8 - 12 + 5 = 1, so that, if the removed face is counted, the result is V-E+F = 2 for the original polyhedron. The next step is to triangulate each face (this is indicated by the diagonal lines in the third figure). If, in triangle ABC [C is not shown in Newman, though it is referred to], edge AC is removed, the number of edges and the number of faces are both reduced by one, so V-E+F is unchanged. This is done for each outer triangle.
Next, if edges DF and EF are removed from triangle DEF, then one face, one vertex, and two edges are removed as well, and V-E+F is unchanged. Again, this is done for each outer triangle. This yields a rectangle from which a right triangle is removed. Again, this will leave V-E+F unchanged. This last step will also yield a figure for which V-E+F = 3-3+1. As previously stated, if we count the removed face from the initial step, then V-E+F = 2 for the given polyhedron.
The “triangulated” diagram was the one Crockett Johnson chose to paint. Each segment of the painting is given its own color so as to indicate each step of the proof. Crockett Johnson executed the two right triangles that form the center rectangle in the most contrasting hues. This draws the viewer’s eyes to this section and thus emphasizes the finale of Euler's proof. This approach to the proof of Euler's polyhedral formula was pioneered by the French mathematician Augustin Louis Cauchy in 1813.
This oil painting on masonite is #39 in the series. It was completed in 1966 and is signed: CJ66. It is inscribed on the back: Crockett Johnson 1966 (/) POLYHEDRON FORMULA (EULER). It has a wood and chrome frame.
Reference:
David Richeson, “The Polyhedral Formula,” in Leonhard Euler: Life, Work and Legacy, editors R. E. Bradley and C. E. Sandifer (2007), pp. 431–34.
Location
Currently not on view
date made
1966
referenced
Euler, Leonhard
painter
Johnson, Crockett
ID Number
1979.1093.27
catalog number
1979.1093.27
accession number
1979.1093

Our collection database is a work in progress. We may update this record based on further research and review. Learn more about our approach to sharing our collection online.

If you would like to know how you can use content on this page, see the Smithsonian's Terms of Use. If you need to request an image for publication or other use, please visit Rights and Reproductions.