Bollée Calculating Machine

Most early calculating machines carried out multiplication as a form of repeated addition. To multiply, say, by thirteen, one set the carriage at its rightmost position, turned the operating crank three times, shifted the carriage one position to the left, and turned the crank once. Ramon Verea of New York had patented a machine capable of direct multiplication in 1878, but it was never produced. In 1888, the young Frenchman Léon Bollée (1870–1913) of Le Mans constructed a calculating machine which embodied a multiplication table. He completed a better version of the machine in time to exhibit it at the Exposition Universelle, a World’s Fair held in Paris in 1889, and received a gold medal. This somewhat later version of the machine came to the Smithsonian from the collection of Felt & Tarrant Manufacturing Company.
The large manually operated non-printing direct multiplication calculating machine has an iron base with a brass and steel mechanism and an open framework. A metal box carrying 12 setting levers moves along a bar near the front of machine. In front of it are a multiplier knob and brass disc with 20 teeth. The spaces between the teeth are labeled from 0 to 9 and from 0 to 9 again around the edge. Rotating the multiplier knob moves the metal box, placing it in one of the spaces between the teeth of the disc sets the digit of the multiplier.
Moving one of the setting levers forward moves forward a multiplication body below it. Each multiplication body is has a rectangular base and rows of vertical pins which represent the multiples of digits from 1 to 9. The pins of the multiplication bodies control the motion of several sets of brass pins mounted vertically over them and linked to the result register. The operating crank with its wooden handle are on the left side. Rotating the crank lifts the box upward so that the multiplication bodies engage the pins.
On the right side is a lever that may be set at either + or -. Toward the front is a set of 21 cylindrical dials, visible through windows. Each dial shows two digits at any one time. The top row of digits is labeled MULTN and used to show the multiplier in multiplication. The lower row of digits is labeled QUOTT and shows the quotient in division. Above this row of cylinders is a row of 21 dials which shows the result in multiplication and is set with thumbscrews with the divisor in division.
A brass piece across the top of the machine reads: MACHINE À CALCULER de Léon BOLLÉE (/) AU MANS [FRANCE]. It also reads: EXPON UNIVLLE (/) PARIS. 1889. MÉDLLE D’OR. It also reads: BTEE S.G.D.G. EN FRANCE (/) ET À L’ÉTRANGER.
A few years after Bollée introduced his machine, the Swiss inventor Otto Steiger patented a direct multiplication calculating machine that would sell widely as the Millionaire.
Léon Bollée, “Calculating-Machine,” U.S. Patent 556720, March 17, 1896. This patent lists Bollée’s French, Belgian and British patent numbers in addition to describing the machine.
Jean Marguin, Histoire des instruments et machines à calculer, Paris: Hermann, 1994, pp. 130–136.
Currently not on view
date made
ca 1892
Bollée, Léon
place made
France: Pays de la Loire, Le Mans
Physical Description
ferrous metal (overall material)
brass (overall material)
leather (overall material)
wood (overall material)
overall: 45.5 cm x 104 cm x 38 cm; 17 29/32 in x 40 15/16 in x 14 31/32 in
ID Number
catalog number
accession number
Credit Line
Gift of Victor Comptometer Corporation
See more items in
Medicine and Science: Mathematics
Science & Mathematics
Calculating Machines
Data Source
National Museum of American History, Kenneth E. Behring Center


Add a comment about this object