#
Art

The National Museum of American History is not an art museum. But works of art fill its collections and testify to the vital place of art in everyday American life. The ceramics collections hold hundreds of examples of American and European art glass and pottery. Fashion sketches, illustrations, and prints are part of the costume collections. Donations from ethnic and cultural communities include many homemade religious ornaments, paintings, and figures. The Harry T Peters "America on Stone" collection alone comprises some 1,700 color prints of scenes from the 1800s. The National Quilt Collection is art on fabric. And the tools of artists and artisans are part of the Museum's collections, too, in the form of printing plates, woodblock tools, photographic equipment, and potters' stamps, kilns, and wheels.

"Art - Overview" showing 18 items.

Page 1 of 2

## Painting -

*Golden Rectangle*- Description
- Crockett Johnson annotated several diagrams in his copy of Valens’s book
*The Number of Things*, and used a few of them as the basis of paintings. This is one example. It shows three golden rectangles, the curves from a compass used to construct the rectangles, and a section of a five-pointed Pythagorean star.

- Euclid showed in his
*Elements*that it is possible to divide a line segment into two smaller segments wherein the ratio of the whole length to the longer part equals the ratio of the longer part to the smaller. He used this theorem in his construction of a regular pentagon. This ratio came to be called the “golden ratio.”

- A golden rectangle is a rectangle whose sides adhere to the golden ratio (in modern terms, the ratio of its length to its width equals (1 + √(5) ) /2, or about 1.62). The golden rectangle is described as the rectangle whose proportions are most pleasing to the eye.

- This painting shows the relationship between a golden rectangle and a five-pointed Pythagorean star by constructing the star from the rectangle. It follows a diagram on the top of page 131 in Evans G. Valens,
*The Number of Things*. This diagram is annotated. Valens describes a geometrical solution to the two expressions f x f = e x c and f = e - c, and associates it with the Pythagoreans. The right triangle on the upper part of Valens's drawing, with the short side and part of the hypotenuse equal to f, is shown facing to the left in the painting. It can be constructed from a square with side equal to the shorter side of the rectangle. Two of the smaller rectangles in the painting are also golden rectangles. Crockett Johnson also includes in the background the star shown by Valens and related lines.

- This painting on masonite, #64 in the series, dates from 1970 and is signed: CJ70. It also is marked on the back: ”GOLDEN RECTANGLE (/) Crockett Johnson 1970. It is executed in two hues of gold to emphasize individual sections. While this method creates a detailed and organized contrast, it disguises the three rectangles and the star. Compare paintings 1979.1093.33 (#46) and 1979.1093.70 (#103).

- Reference: Evans G. Valens,
*The Number of Things*(1964), p. 131.

- Location
- Currently not on view

- date made
- 1970

- painter
- Johnson, Crockett

- ID Number
- 1979.1093.39

- accession number
- 1979.1093

- catalog number
- 1979.1093.39

- Data Source
- National Museum of American History, Kenneth E. Behring Center

## Painting -

*Heptagon from Its Seven Sides*- Description
- Toward the end of his life, Crockett Johnson took up the problem of constructing a regular seven-sided polygon or heptagon. This construction, as Gauss had demonstrated, requires more than a straight edge and compass. Crockett Johnson used compass and a straight edge with a unit length marked on it. Archimedes and Newton had suggested that constructions of this sort could be used to trisect the angle and to find a cube with twice the volume of a given cube, and Crockett Johnson followed their example.

- One may construct a heptagon given an angle of pi divided by seven. If an isosceles triangle with this vertex angle is inscribed in a circle, the base of the triangle will have the length of one side of a regular heptagon inscribed in that circle. According to Crockett Johnson's later account, in the fall of 1973, while having lunch in the city of Syracuse on Sicily during a tour of the Mediterranean, he toyed with seven toothpicks, arranging them in various patterns. Eventually he created an angle with his menu and wine list and arranged the seven toothpicks within the angle in crisscross patterns until his arrangement appeared as is shown in the painting.

- Crockett Johnson realized that the vertex angle of the large isosceles triangle shown is exactly π/7 radians, as desired. The argument suggested by his diagram is more complex than what he later published. The numerical results shown in the figure suggest his willingness to carry out detailed calculations.

*Heptagon from its Seven Sides*, painted in 1973 and #107 in the series, shows a triangle with purple and white sections on a navy blue background. This oil or acrylic painting on masonite is signed on its back : HEPTAGON FROM (/) ITS SEVEN SIDES (/) (Color sketch for larger painting) (/) Crockett Johnson 1973. No larger painting on this pattern is at the Smithsonian.

- Reference: Crockett Johnson, "A Construction for a Regular Heptagon," Mathematical Gazette, 1975, vol. 59, pp. 17–21.

- Location
- Currently not on view

- date made
- 1973

- painter
- Johnson, Crockett

- ID Number
- 1979.1093.74

- catalog number
- 1979.1093.74

- accession number
- 1979.1093

- Data Source
- National Museum of American History, Kenneth E. Behring Center

## Painting -

*Hippias' Curve*- Description
- This painting is a construction of Crockett Johnson, relating to a curve attributed to the ancient Greek mathematician Hippias. This was one of the first curves, other than the straight line and the circle, to be studied by mathematicians. None of Hippias's original writings survive, and the curve is relatively little known today. Crockett Johnson may well have followed the description of the curve given by Petr Beckmann in his book
*The History of Pi*(1970). Crockett Johnson's copy of Beckmann’s book has some light pencil marks on his illustration of the theorem on page 39 (see figure).

- Hippias envisioned a curve generated by two motions. In Crockett Johnson's own drawing, a line segment equal to OB is supposed to move uniformly leftward across the page, generating a series of equally spaced vertical line segments. OB also rotates uniformly about the point O, forming the circular arc BQA. The points of intersection of the vertical lines and the arc are points on Hippias's curve. Assuming that the radius OK has a length equal to the square root of pi, the square AOB (the surface of the painting) has area equal to pi. Moreover, the height of triangle ASO, OS, is √(4 / pi), so that the area of triangle ASO is 1.

- The painting has a gray border and a wood and metal frame. The sections of the square and of the regions under Hippias's curve are painted in various pastel shades, ordered after the order of a color wheel.

- This oil painting is #114 in the series. It is signed on the back: HIPPIAS' CURVE (/) SQUARE AREA = (/) TRIANGLE " = 1 = [ . .] (/) Crockett Johnson 1973.

- Location
- Currently not on view

- date made
- 1973

- referenced
- Hippias

- painter
- Johnson, Crockett

- ID Number
- 1979.1093.76

- accession number
- 1979.1093

- catalog number
- 1979.1093.76

- Data Source
- National Museum of American History, Kenneth E. Behring Center

## Painting -

*Construction of Heptagon*- Description
- This painting represents one of Crockett Johnson's early constructions of a heptagon. It shows a large purple circle, a pink triangle superimposed, and two smaller circles. Crockett Johnson's diagram for the painting is shown. Two equal circles are constructed, with the center of the first on the second and conversely (circles with centers C and D in the diagram), and a line segment drawn that includes their points of intersection. Then, in Crockett Johnson's words, "Against a straight edge controlling their alignment the sought points B, U, and E, are determined by the adjustment of compass arcs BC from U and EC from B. Angles FBC, CBD, DBE, and BAF are π/ 7." Detailed examination of the triangles in the drawing shows that this is indeed the case.

- The colors of the painting highlight the circles, lines, and arcs central to the construction, and the largest of the resulting isosceles triangles with vertex angle π/7 is shown in bold shades of pink. The short line called CF in the drawing (as well as line segments CD and DE, which are not shown), is the length of the side of a heptagon inscribed in a circle centered at B with radius BF.

- The oil on masonite work is #116 in the series. It has a gray background and a wood and metal frame. It is inscribed on the back: CONSTRUCTION OF HEPTAGON (/) . . .(8) (/) Crockett Johnson 1973.

- Location
- Currently not on view

- date made
- 1973

- painter
- Johnson, Crockett

- ID Number
- 1979.1093.78

- accession number
- 1979.1093

- catalog number
- 1979.1093.78

- Data Source
- National Museum of American History, Kenneth E. Behring Center

## Painting -

*Construction of the Heptagon*- Description
- Three very similar paintings in the Crockett Johnson collection are closely related to the construction of a side of an inscribed regular a heptagon which he published in
*The Mathematical Gazette*in 1975. The paper presents a way of producing an isosceles triangle with angles in the ratio 3:3:1, so that the smallest angle in the triangle is π/7. This angle is then inscribed in a large circle, and intercepts an arc length of π/7. A central angle of the same circle intercepts twice the angle, that is to say 2π/7, and the corresponding chord the side of an inscribed heptagon.

- Crockett Johnson described the construction of his isosceles triangle in the diagram shown in the image. The horizontal line segment below the circle on the painting corresponds to unit length BF in the figure, and the triangle is ABF. The light colors of the painting highlight important points in the construction - marking off an arc of radius equal to the square root of 2 with center F, measuring the unit length AO along a marked straight edge that passes through B and ends at point A on the perpendicular bisector, and finding the side of the regular inscribed heptagon.

- This version of the construction of a heptagon is #108 in the series. The oil painting on masonite with chrome frame was completed in 1975 and is unsigned. It is marked on the back: Construction of the Heptagon (/) Crockett Johnson 1975. See also paintings #115 (1979.1093.77) and #117 (1979.1093.79) in the series.

- Reference: Crockett Johnson, "A Construction for a Regular Heptagon,"
*Mathematical Gazette*, 1975, vol. 59, pp.17–21.

- Location
- Currently not on view

- date made
- 1975

- painter
- Johnson, Crockett

- ID Number
- MA*335571

- accession number
- 322732

- catalog number
- 335571

- Data Source
- National Museum of American History, Kenneth E. Behring Center

## Painting -

*Problem of Delos Constructed from a Solution by Isaac Newton (Arithmetica Universalis)*- Description
- Two paintings in the Crockett Johnson collection concern the ancient problem of doubling the volume of a given cube, or the problem of Delos. Crockett Johnson wrote of this problem: "Plutarch mentions it, crediting as his source a now lost version of the legend written by the third century BC Alexandrian Greek astronomer Eratosthenes, who first measured the size of the Earth. Suffering from plague, Athens sent a delegation to Delos, Apollo’s birthplace, to consult its oracle. The oracle’s instruction to the Athenians, to double the size of their cubical altar stone, presented an impossible problem. . . ."(p. 99). Hence the reference to the problem of Delos in the title of the painting.

- Isaac Newton suggested a solution to the problem in his book
*Arithmetica Universalis*, first published in 1707. His construction served as the basis of the painting. Newton’s figure, as redrawn by Crockett Johnson, begins with a base (OA), bisected at a point (B), with an equilateral triangle (OCB) constructed on one of the halves of the base. Newton then extended the sides of this triangle through one vertex. Placing a marked straightedge at one end of the base (O), he rotated the rule so that the distance between the two lines extended equaled the sides of the triangle (in the figure, DE = OB = BA = OC = BC). If these line segments are of length one, one can show that the line segment OD is of length equal to the cube root of two, as desired.

- In Crockett Johnson’s painting, the line OA slants across the bottom and the line ODE is vertical on the left. The four squares drawn from the upper left corner (point E) have sides of length 1, the cube root of 2, the cube root of 4, and two. The distance DE (1) represents the edge of the side and the volume of a unit cube, while the sides of three larger squares represent the edge (the cube root of 2), the side (the square of the cube root of 2) and the volume (the cube of the cube root of two) of the doubled cube.

- This oil painting on masonite is #56 in the series and dates from 1970. The work is signed: CJ70. It is inscribed on the back: PROBLEM OF DELOS (/) CONSTRUCTED FROM A SOLUTION BY (/) ISAAC NEWTON (ARITHMETICA UNIVERSALIS) (/) Crockett Johnson 1970. The painting has a wood and metal frame. For related documentation see 1979.3083.04.06. See also painting number 85 (1979.1093.55), with the references given there.

- Reference: Crockett Johnson, “On the Mathematics of Geometry in My Abstract Paintings,”
*Leonardo*5 (1972): pp. 98–9.

- Location
- Currently not on view

- date made
- 1970

- referenced
- Newton, Isaac

- painter
- Johnson, Crockett

- ID Number
- 1979.1093.36

- catalog number
- 1979.1093.36

- accession number
- 1979.1093

- Data Source
- National Museum of American History, Kenneth E. Behring Center

## Painting -

*Division of the Square by Conic Rectangles*- Description
- This painting shows three rectangles of equal area, one in shades of blue, one in shades of purple, and one in shades of pink. The height of the middle rectangle equals the height of the first rectangle less its own width, while the height of the third rectangle equals the height of the first triangle less the width of the first triangle. Crockett Johnson associated these properties with conic curves. The construction is that of the artist. The coloring was suggested by a recently discovered French cave painting. The narrow rectangle on the left side and the dark, thin triangle at the base were also added to correspond to the cave painting.

- The oil painting on masonite is #60 in the series. It is signed: CJ70, and inscribed on the back: DIVISION OF THE SQUARE BY CONIC RECTANGLES (/) (GNOMON ADDED AT THE SUGGESTION OF A CRO-MAGNON (/) ARTIST OF LASCAUX (/) Crockett Johnson 1970. The painting is in a black wooden frame. For related documentation see 1979.3083.02.05.

- Reference: Crockett Johnson, "On the Mathematics of Geometry in My Abstract Paintings,"
*Leonardo*5 (1972): pp. 98–101.

- Location
- Currently not on view

- date made
- 1970

- painter
- Johnson, Crockett

- ID Number
- 1979.1093.37

- catalog number
- 1979.1093.37

- accession number
- 1979.1093

- Data Source
- National Museum of American History, Kenneth E. Behring Center

## Painting -

*Aligned Triangles (Desargues)*- Description
- In the 17th century, the French engineer and architect Girard Desargues (1591–1661) explored interconnections between extensions of the lines within a pencil of three line segments (a pencil of line segments consists of several line segments originating at a common point). His theorems, as published in his own extremely obscure work and also by his contemporary, Abraham Bosse, were extended in the 19th century, and proved of fundamental importance to projective geometry.

- Crockett Johnson's library contains discussions of Desargues' theorem by H. S. M. Coxeter, N. A. Court, Heinrich Dorrie, and William M. Ivins. This painting most resembles a figure from Coxeter, although the diagram is not annotated. Suppose that the vertices of two triangles (PQR and P'Q'R' in Figure 1.5B from Coxeter) lie on a pencil of three line segments emanating from the point O. Suppose that similarly situated sides of the two triangles can be extended to meet in the three points denoted by A, C and B in the figure. According to Desargues' theorem, A, C, and B are collinear.

- In the painting, the two concurrent triangles are shown in shades of gray and black, while the top of the pencil of three lines is in shades of gold. Extensions of the sides and their points of intersection are clearly shown. Both the figure and the background of the painting are divided by the line joining the points of intersection

- The painting is #63 in the series. It is painted in oil or acrylic on masonite, and has a brown wooden frame. The painting is signed: CJ70.

- References:

- Newman, J. R.,
*The World of Mathematics*, p. 133. Figure annotated.

- Court, N. A.,
*College Geometry*(1952), pp. 163–5. The figure is not annotated.

- Coxeter, H. S. M.,
*The Real Projective Plane*, (1955 edition), p. 7. The figure resembles the painting but is not annotated.

- Dorrie, Heinrich,
*100 Great Problems of Elementary Mathematics: Their History and Solution*(1965), p. 267. There is an annotated figure here for another theorem of Desargues, the theorem of involution.

- Field, J. V.,
*The Invention of Infinity: Mathematics and Art in the Renaissance*(1997), pp. 190–206.

- Ivins, William M. Jr.,
*Art & Geometry: A Study in Space Intuitions*(1946), pp. 87–94.

- Location
- Currently not on view

- date made
- 1970

- referenced
- Desargues, Girard

- painter
- Johnson, Crockett

- ID Number
- 1979.1093.38

- accession number
- 1979.1093

- catalog number
- 1979.1093.38

- Data Source
- National Museum of American History, Kenneth E. Behring Center

## Painting -

*Law of Motion (Galileo)*- Description
- Crockett Johnson based this painting on the discussion of motion along inclined planes by Galileo Galilee in his
*Dialogues Concerning Two New Sciences*(1638). Here Galileo showed that if from a fixed point straight lines be extended indefinitely downwards and a point be imagined to move along each line at a constant speed, all starting from the fixed point at the same time and moving with equal speeds, the locus of the moving points will be an expanding circle.

- This painting shows four superimposed circles in various shades of gray, white and black. These circles all have a common point at the center top, and differ in radius. They are shaded into several regions which are divided by lines originating at the common point. The work has an orange background and a black wooden frame. It is probably based on a drawing in E. G. Valens,
*The Attractive Universe*(1969). This volume is in Crockett Johnson's library, annotated on the page indicated.

- The painting is #71 in the series. It is signed: CJ70.

- References: Galileo Galilee,
*Dialog Concerning Two New Sciences, Third Day*(Figure 59 in the Dover edition).

- E. G. Valens,
*The Attractive Universe: Gravity and the Shape of Space*, Cleveland and New York: World Publishing Company, 1969, p. 135.

- Location
- Currently not on view

- date made
- 1970

- referenced
- Galilei, Galileo

- painter
- Johnson, Crockett

- ID Number
- 1979.1093.46

- catalog number
- 1979.1093.46

- accession number
- 1979.1093

- Data Source
- National Museum of American History, Kenneth E. Behring Center

## Painting -

*Rotated Triangle and Reflections*- Description
- Plane figures of the same size and shape can be moved about in several ways and preserve their size and form. Such congruent transformations, as they are called, are combinations of rotations about a point or a line, reflections about a line, or translations in which the figure moves about the plane but the directions of the sides is unchanged.

- This painting, which closely follows a diagram from a book by H. S. M. Coxeter, illustrates two properties of congruent transformations. First, a transformation in which only one point remains unchanged is a rotation. In the figure, the triangle PQR passes through a congruent transformation into the triangle PQ'R'. Suppose that the transformation consisted of a reflection. Then triangle PQR could be rotated about the line m to another triangle, PRR[1]. However, these two triangles have a line, and not simply a point, in common. Coxeter went on to argue that any congruent transformation can be constructed as the product of reflections, the number of which can be reduced to three.

- In the painting, as in the diagram, there are three congruent triangles. One light blue and gray triangle rotates into another light blue triangle above it to the right (the axis of rotation is perpendicular to the painting). The blue and blue-gray triangle is a rotation of the first triangle about the axis m, and a reflection of the other. The background is in two shades of gray, divided by this line of rotation.

- The painting is #73 in the series and signed: CJ70. It has a metal frame.

- Reference: H. S. M. Coxeter,
*The Real Projective Plane*, p. 153.

- Location
- Currently not on view

- date made
- 1970

- painter
- Johnson, Crockett

- ID Number
- 1979.1093.47

- catalog number
- 1979.1093.47

- accession number
- 1979.1093

- Data Source
- National Museum of American History, Kenneth E. Behring Center